109 research outputs found

    Automated computed tomography based parasitoid detection in mason bee rearings

    Full text link
    In recent years, insect husbandry has seen an increased interest in order to supply in the production of raw materials, food, or as biological/environmental control. Unfortunately, large insect rearings are susceptible to pathogens, pests and parasitoids which can spread rapidly due to the confined nature of a rearing system. Thus, it is of interest to monitor the spread of such manifestations and the overall population size quickly and efficiently. Medical imaging techniques could be used for this purpose, as large volumes can be scanned non-invasively. Due to its 3D acquisition nature, computed tomography seems to be the most suitable for this task. This study presents an automated, computed tomography-based, counting method for bee rearings that performs comparable to identifying all Osmia cornuta cocoons manually. The proposed methodology achieves this in an average of 10 seconds per sample, compared to 90 minutes per sample for the manual count over a total of 12 samples collected around lake Zurich in 2020. Such an automated bee population evaluation tool is efficient and valuable in combating environmental influences on bee, and potentially other insect, rearings

    Clinical potential of automated convolutional neural network-based hematoma volumetry after aneurysmal subarachnoid hemorrhage

    Full text link
    Objectives Cerebrospinal fluid hemoglobin has been positioned as a potential biomarker and drug target for aneurysmal subarachnoid hemorrhage-related secondary brain injury (SAH-SBI). The maximum amount of hemoglobin, which may be released into the cerebrospinal fluid, is defined by the initial subarachnoid hematoma volume (ISHV). In patients without external ventricular or lumbar drain, there remains an unmet clinical need to predict the risk for SAH-SBI. The aim of this study was to explore automated segmentation of ISHV as a potential surrogate for cerebrospinal fluid hemoglobin to predict SAH-SBI. Methods This study is based on a retrospective analysis of imaging and clinical data from 220 consecutive patients with aneurysmal subarachnoid hemorrhage collected over a five-year period. 127 annotated initial non-contrast CT scans were used to train and test a convolutional neural network to automatically segment the ISHV in the remaining cohort. Performance was reported in terms of Dice score and intraclass correlation. We characterized the associations between ISHV and baseline cohort characteristics, SAH-SBI, ventriculoperitoneal shunt dependence, functional outcome, and survival. Established clinical (World Federation of Neurosurgical Societies, Hunt & Hess) and radiological (modified Fisher, Barrow Neurological Institute) scores served as references. Results A strong volume agreement (0.73 Dice, range 0.43 - 0.93) and intraclass correlation (0.89, 95% CI, 0.81-0.94) were shown. While ISHV was not associated with the use of antithrombotics or cardiovascular risk factors, there was strong evidence for an association with a lower Glasgow Coma Scale at hospital admission. Aneurysm size and location were not associated with ISHV, but the presence of intracerebral or intraventricular hemorrhage were independently associated with higher ISHV. Despite strong evidence for a positive association between ISHV and SAH-SBI, the discriminatory ability of ISHV for SAH-SBI was insufficient. The discriminatory ability of ISHV was, however, higher regarding ventriculoperitoneal shunt dependence and functional outcome at three-months follow-up. Multivariate survival analysis provided strong evidence for an independent negative association between survival probability and both ISHV and intraventricular hemorrhage. Conclusions The proposed algorithm demonstrates strong performance in volumetric segmentation of the ISHV on the admission CT. While the discriminatory ability of ISHV for SAH-SBI was similar to established clinical and radiological scores, it showed a high discriminatory ability for ventriculoperitoneal shunt dependence and functional outcome at three-months follow-up

    Hepatic vessel segmentation using a reduced filter 3D U-Net in ultrasound imaging

    Get PDF
    Accurate hepatic vessel segmentation on ultrasound (US) images can be an important tool in the planning and execution of surgery, however proves to be a challenging task due to noise and speckle. Our method comprises a reduced filter 3D U-Net implementation to automatically detect hepatic vasculature in 3D US volumes. A comparison is made between volumes acquired with a 3D probe and stacked 2D US images based on electromagnetic tracking. Experiments are conducted on 67 scans, where 45 are used in training, 12 in validation and 10 in testing. This network architecture yields Dice scores of 0.740 and 0.781 for 3D and stacked 2D volumes respectively, comparing promising to literature and inter-observer performance (Dice = 0.879).Comment: 3 pages, conference extended abstract. MIDL 2019 [arXiv:1907.08612

    MyD88-TLR4-dependent choroid plexus activation precedes perilesional inflammation and secondary brain edema in a mouse model of intracerebral hemorrhage

    Full text link
    Background: The functional neurological outcome of patients with intracerebral hemorrhage (ICH) strongly relates to the degree of secondary brain injury (ICH-SBI) evolving within days after the initial bleeding. Different mechanisms including the incitement of inflammatory pathways, dysfunction of the blood–brain barrier (BBB), activation of resident microglia, and an influx of blood-borne immune cells, have been hypothesized to contribute to ICH-SBI. Yet, the spatiotemporal interplay of specific inflammatory processes within different brain compartments has not been sufficiently characterized, limiting potential therapeutic interventions to prevent and treat ICH-SBI. Methods: We used a whole-blood injection model in mice, to systematically characterized the spatial and temporal dynamics of inflammatory processes after ICH using 7-Tesla magnetic resonance imaging (MRI), spatial RNA sequencing (spRNAseq), functional BBB assessment, and immunofluorescence average-intensity-mapping. Results: We identified a pronounced early response of the choroid plexus (CP) peaking at 12–24 h that was characterized by inflammatory cytokine expression, epithelial and endothelial expression of leukocyte adhesion molecules, and the accumulation of leukocytes. In contrast, we observed a delayed secondary reaction pattern at the injection site (striatum) peaking at 96 h, defined by gene expression corresponding to perilesional leukocyte infiltration and correlating to the delayed signal alteration seen on MRI. Pathway analysis revealed a dependence of the early inflammatory reaction in the CP on toll-like receptor 4 (TLR4) signaling via myeloid differentiation factor 88 (MyD88). TLR4 and MyD88 knockout mice corroborated this observation, lacking the early upregulation of adhesion molecules and leukocyte infiltration within the CP 24 h after whole-blood injection. Conclusions: We report a biphasic brain reaction pattern after ICH with a MyD88-TLR4-dependent early inflammatory response of the CP, preceding inflammation, edema and leukocyte infiltration at the lesion site. Pharmacological targeting of the early CP activation might harbor the potential to modulate the development of ICH-SBI

    Blood oxygenation-level dependent cerebrovascular reactivity imaging as strategy to monitor CSF-hemoglobin toxicity

    Full text link
    Objectives: Cell-free hemoglobin in the cerebrospinal fluid (CSF-Hb) may be one of the main drivers of secondary brain injury after aneurysmal subarachnoid hemorrhage (aSAH). Haptoglobin scavenging of CSF-Hb has been shown to mitigate cerebrovascular disruption. Using digital subtraction angiography (DSA) and blood oxygenation-level dependent cerebrovascular reactivity imaging (BOLD-CVR) the aim was to assess the acute toxic effect of CSF-Hb on cerebral blood flow and autoregulation, as well as to test the protective effects of haptoglobin. Methods: DSA imaging was performed in eight anesthetized and ventilated sheep (mean weight: 80.4 kg) at baseline, 15, 30, 45 and 60 minutes after infusion of hemoglobin (Hb) or co-infusion with haptoglobin (Hb:Haptoglobin) into the left lateral ventricle. Additionally, 10 ventilated sheep (mean weight: 79.8 kg) underwent BOLD-CVR imaging to assess the cerebrovascular reserve capacity. Results: DSA imaging did not show a difference in mean transit time or cerebral blood flow. Whole-brain BOLD-CVR compared to baseline decreased more in the Hb group after 15 minutes (Hb vs Hb:Haptoglobin: -0.03 ± 0.01 vs -0.01 ± 0.02) and remained diminished compared to Hb:Haptoglobin group after 30 minutes (Hb vs Hb:Haptoglobin: -0.03 ± 0.01 vs 0.0 ± 0.01), 45 minutes (Hb vs Hb:Haptoglobin: -0.03 ± 0.01 vs 0.01 ± 0.02) and 60 minutes (Hb vs Hb:Haptoglobin: -0.03 ± 0.02 vs 0.01 ± 0.01). Conclusion: It is demonstrated that CSF-Hb toxicity leads to rapid cerebrovascular reactivity impairment, which is blunted by haptoglobin co-infusion. BOLD-CVR may therefore be further evaluated as a monitoring strategy for CSF-Hb toxicity after aSAH

    The HeMoVal study protocol: a prospective international multicenter cohort study to validate cerebrospinal fluid hemoglobin as a monitoring biomarker for aneurysmal subarachnoid hemorrhage related secondary brain injury.

    Get PDF
    INTRODUCTION Preclinical studies provided a strong rationale for a pathophysiological link between cell-free hemoglobin in the cerebrospinal fluid (CSF-Hb) and secondary brain injury after subarachnoid hemorrhage (SAH-SBI). In a single-center prospective observational clinical study, external ventricular drain (EVD) based CSF-Hb proved to be a promising biomarker to monitor for SAH-SBI. The primary objective of the HeMoVal study is to prospectively validate the association between EVD based CSF-Hb and SAH-SBI during the first 14 days post-SAH. Secondary objectives include the assessment of the discrimination ability of EVD based CSF-Hb for SAH-SBI and the definition of a clinically relevant range of EVD based CSF-Hb toxicity. In addition, lumbar drain (LD) based CSF-Hb will be assessed for its association with and discrimination ability for SAH-SBI. METHODS HeMoVal is a prospective international multicenter observational cohort study. Adult patients admitted with aneurysmal subarachnoid hemorrhage (aSAH) are eligible. While all patients with aSAH are included, we target a sample size of 250 patients with EVD within the first 14 day after aSAH. Epidemiologic and disease-specific baseline measures are assessed at the time of study inclusion. In patients with EVD or LD, each day during the first 14 days post-SAH, 2 ml of CSF will be sampled in the morning, followed by assessment of the patients for SAH-SBI, co-interventions, and complications in the afternoon. After 3 months, a clinical follow-up will be performed. For statistical analysis, the cohort will be stratified into an EVD, LD and full cohort. The primary analysis will quantify the strength of association between EVD based CSF-Hb and SAH-SBI in the EVD cohort based on a generalized additive model. Secondary analyses include the strength of association between LD based CSF-Hb and SAH-SBI in the LD cohort based on a generalized additive model, as well as the discrimination ability of CSF-Hb for SAH-SBI based on receiver operating characteristic (ROC) analyses. DISCUSSION We hypothesize that this study will validate the value of CSF-Hb as a biomarker to monitor for SAH-SBI. In addition, the results of this study will provide the potential base to define an intervention threshold for future studies targeting CSF-Hb toxicity after aSAH. STUDY REGISTRATION ClinicalTrials.gov Identifier NCT04998370 . Date of registration: August 10, 2021

    The HeMoVal study protocol: a prospective international multicenter cohort study to validate cerebrospinal fluid hemoglobin as a monitoring biomarker for aneurysmal subarachnoid hemorrhage related secondary brain injury

    Full text link
    Introduction: Preclinical studies provided a strong rationale for a pathophysiological link between cell-free hemoglobin in the cerebrospinal fluid (CSF-Hb) and secondary brain injury after subarachnoid hemorrhage (SAH-SBI). In a single-center prospective observational clinical study, external ventricular drain (EVD) based CSF-Hb proved to be a promising biomarker to monitor for SAH-SBI. The primary objective of the HeMoVal study is to prospectively validate the association between EVD based CSF-Hb and SAH-SBI during the first 14 days post-SAH. Secondary objectives include the assessment of the discrimination ability of EVD based CSF-Hb for SAH-SBI and the definition of a clinically relevant range of EVD based CSF-Hb toxicity. In addition, lumbar drain (LD) based CSF-Hb will be assessed for its association with and discrimination ability for SAH-SBI. Methods: HeMoVal is a prospective international multicenter observational cohort study. Adult patients admitted with aneurysmal subarachnoid hemorrhage (aSAH) are eligible. While all patients with aSAH are included, we target a sample size of 250 patients with EVD within the first 14 day after aSAH. Epidemiologic and disease-specific baseline measures are assessed at the time of study inclusion. In patients with EVD or LD, each day during the first 14 days post-SAH, 2 ml of CSF will be sampled in the morning, followed by assessment of the patients for SAH-SBI, co-interventions, and complications in the afternoon. After 3 months, a clinical follow-up will be performed. For statistical analysis, the cohort will be stratified into an EVD, LD and full cohort. The primary analysis will quantify the strength of association between EVD based CSF-Hb and SAH-SBI in the EVD cohort based on a generalized additive model. Secondary analyses include the strength of association between LD based CSF-Hb and SAH-SBI in the LD cohort based on a generalized additive model, as well as the discrimination ability of CSF-Hb for SAH-SBI based on receiver operating characteristic (ROC) analyses. Discussion: We hypothesize that this study will validate the value of CSF-Hb as a biomarker to monitor for SAH-SBI. In addition, the results of this study will provide the potential base to define an intervention threshold for future studies targeting CSF-Hb toxicity after aSAH

    Field site selection: getting it right first time around

    Get PDF
    The selection of suitable field sites for integrated control of Anopheles mosquitoes using the sterile insect technique (SIT) requires consideration of the full gamut of factors facing most proposed control strategies, but four criteria identify an ideal site: 1) a single malaria vector, 2) an unstructured, relatively low density target population, 3) isolation of the target population and 4) actual or potential malaria incidence. Such a site can exist in a diverse range of situations or can be created. Two contrasting SIT field sites are examined here: the desert-flanked Dongola Reach of the Nile River in Northern State, Sudan, where malaria is endemic, and the island of La Reunion, where autochthonous malaria is rare but risk is persistent. The single malaria-transmitting vector at both sites is Anopheles arabiensis. In Sudan, the target area is a narrow 500 km corridor stretching from the rocky terrain at the Fourth Cataract - just above the new Merowe Dam, to the northernmost edge of the species range, close to Egypt. Vector distribution and temporal changes in density depend on the Nile level, ambient temperature and human activities. On La Reunion, the An. arabiensis population is coastal, limited and divided into three areas by altitude and exposure to the trade winds on the east coast. Mosquito vectors for other diseases are an issue at both sites, but of primary importance on La Reunion due to the recent chikungunya epidemic. The similarities and differences between these two sites in terms of suitability are discussed in the context of area-wide integrated vector management incorporating the SIT
    • …
    corecore